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Abstract

This exploratory pilot study investigates why Large
Language Model (LLM) performance benchmarks of-
ten diverge from real-world professional outcomes.
We propose a methodology for identifying the High-
Entropy Regime—the informational boundary where
autonomous inference fails to maintain structural co-
herence. Utilizing an exploratory sample of decomposed
professional requirements (N = 156), we apply a Heck-
man Selection Correction to identify curation bias in
benchmark datasets. Our results provide **significant
evidence of Selection Bias (p = 0.03)**, suggesting that
existing ”gold-standard” benchmarks are non-randomly
curated toward modular, low-coordination tasks. While
limited statistical power prevents definitive confirma-
tion of a non-linear coordination penalty, this find-
ing suggests that current measures of AI parity are
confounded by structural selection, masking the true
boundaries of the biological expert premium.

1 Introduction

The deployment of frontier AI agents in 2026 has cre-
ated a ”Benchmark Paradox”: while LLMs achieve par-
ity on traditional indices, human experts maintain sub-
stantial premiums in real-world professional markets.
We hypothesize that this divergence is not a failure of
market efficiency, but a failure of measurement. Specif-
ically, we argue that benchmarks are systematically bi-
ased toward tasks with low coordination complexity.

2 Methodology

2.1 Data and Sample Selection

We utilized the recently released Scale AI Remote La-
bor Index (RLI) Public Set. To ensure high-fidelity
modeling, we decomposed 10 foundational projects into
**156 discrete requirements**. After applying Mini-
mum Description Length (MDL) filters to exclude zero-
entropy instructions and requirements lacking explicit
market-wage anchors, the final econometric dataset
comprises **N = 57 valid subtasks**. This filtering
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process isolates ”active” inference tasks from adminis-
trative overhead.

2.2 Information-Theoretic Complexity

To minimize measurement error associated with
prompt-engineer variance, we replace heuristic proxies
with unit-less metrics derived from Information Theory.

1. Inference Density (E): Defined as the expan-
sion ratio between the Minimum Description Length
(MDL) of the instruction set (B) and the resulting so-
lution (S). We utilize zlib compression as a pragmatic
upper-bound proxy for Kolmogorov complexity (K):

E =
K(S)

K(B)
(1)

Values of E > 1 indicate that the task requires signif-
icant generative inference beyond the explicit informa-
tion contained in the instruction.

2. Coordination Complexity (κ): A normal-
ized state-dependency metric measuring the density of
unique symbolic references (σ) across the solution ar-
chitecture:

κ =
count(unique σ)

ln(Total Chars)
(2)

2.3 Identification Strategy

We utilize a two-stage Heckman procedure to isolate
the technological production function.

Stage 1: Selection Correction. We estimate a
Probit model to account for non-random task inclusion
in benchmarks. We utilize ’Automation Exposure’ as an
instrumental variable. While we acknowledge potential
exclusion restriction concerns if exposure directly im-
pacts wages, in this exploratory context, it functions as
a proxy for the ’technological modularity’ required for
benchmark inclusion.

Stage 2: The Production Function. We estimate
a Mean-Centered Translog Production Function. To
account for the finite cluster count (G = 10 projects),
we employ a **Wild Cluster Bootstrap** procedure to
generate robust confidence intervals.
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3 Results

3.1 Selection and Convergence

The first-stage Probit results (Table 1) confirm the va-
lidity of the selection instrument. Automation Expo-
sure is a highly significant predictor of task inclusion
(z = 7.34, p < 0.001), suggesting that current profes-
sional benchmarks are non-randomly curated toward
’modular’ tasks with high technological applicability.

Table 1: Stage 1: Selection Correction (Probit)

Variable Coefficient Z-Score

Constant -7.634 -7.39 ***
Automation Exp. 29.810 7.34 ***

Log-Likelihood -42.11 N=156

3.2 Technological Production Function

The bootstrapped Translog model (Table 2) identi-
fies the structural boundaries of AI labor productivity
within the filtered sample (N = 57).

Table 2: Translog Production Function (N=57)

Variable Coef. 95% CI P-Val

Intercept 6.990 [3.04, 10.13] 0.00 ***
lnE -0.025 [-0.33, 0.05] 1.00
lnκ 0.282 [0.00, 2.08] 0.44
1
2 (lnE)2 -0.057 [-0.47, 0.08] 1.00
1
2 (lnκ)

2 0.396 [0.00, 2.78] 0.22
lnE · lnκ -0.016 [-0.78, 0.39] 0.80
IMR (λ) -10.356 [-17.20, -2.79] 0.03 *

*p ¡ 0.05, **p ¡ 0.01, ***p ¡ 0.001

3.3 Selection and Curation Bias

The primary finding is the **statistical significance
of the selection term (IMR: p=0.03)**. This indi-
cates that benchmarked AI performance is heavily con-
founded by selection bias.

3.4 Coordination Penalty

While the exploratory sample lacks the statistical power
to confirm non-linear interactions at conventional sig-
nificance levels (e.g., (lnκ)2, p = 0.22), the data sug-
gests a potential trend toward coordination penalties,
though this requires confirmation with larger samples.

3.5 Production Function Analysis

While the quadratic term for Artifact Coupling exhibits
a positive coefficient (0.396), it does not reach con-
ventional significance thresholds in the bootstrapped
model (p = 0.22, N = 57). This preliminary result
suggests potential non-linearity but requires validation

Figure 1: The Selection Cliff: Curation bias in existing
”Gold Standard” benchmarks (p=0.03).

Figure 2: The Complexity Frontier: Distribution of
Professional Labor across Instruction Entropy and Ar-
tifact Coupling.

with larger samples to confirm the ”Complexity Kink”
hypothesis.

4 Discussion

4.1 The Instruction Quality Paradox

A common critique suggests that LLMs can execute
high-entropy tasks if provided with expert-level instruc-
tion sets. We define this as the Instruction Quality
Paradox. High-signal instructions from an expert hu-
man effectively lower the local E for the agent by of-
floading inference labor into the prompt. However, the
labor required to generate such briefs represents a shift
from ’Execution Labor’ to ’Orchestration Labor.’ Our
methodology accounts for this by utilizing the MDL ra-
tio, ensuring that the metric captures the total informa-
tion expansion required for task completion regardless
of the prompt-solution boundary.

5 Conclusion

This exploratory pilot study demonstrates that existing
AI benchmarks are non-randomly curated (p = 0.03),
favoring modular tasks that under-represent the coordi-
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Figure 3: The Complexity Frontier: Exploratory visu-
alization of the relationship between task complexity
metrics and outcomes (N = 57). While suggestive of
non-linearity, effects do not reach statistical significance
in the pilot sample.

nation complexity of professional labor. This selection
bias has important implications: current AI capabili-
ties may be systematically overestimated in domains re-
quiring high coordination complexity. Benchmark per-
formance may not generalize to real-world professional
tasks, explaining the persistent wage premiums for hu-
man experts despite reported AI ’parity’ on standard-
ized measures. While our exploratory sample (N = 57)
lacks the statistical power to detect moderate effects of
E and κ (all p > 0.20), which may reflect measurement
challenges or limited variance in curated benchmarks,
the presence of robust selection bias suggests that the
”High-Entropy Regime” is currently a blind spot in AI
performance measurement. Future research must look
beyond ”modular” tasks to accurately map the techno-
logical frontier.
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